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ABSTRACT
Damage to the genome is recognized as a fundamental cause of
developmental and degenerative diseases. Several micronutrients
play an important role in protecting against DNA damage events
generated through endogenous and exogenous factors by acting as
cofactors or substrates for enzymes that detoxify genotoxins as well
as enzymes involved in DNA repair, methylation, and synthesis. In
addition, it is evident that either micronutrient deficiency or micro-
nutrient excess can modify genome stability and that these effects
may also depend on nutrient-nutrient and nutrient-gene interaction,
which is affected by genotype. These observations have led to the
emerging science of genome health nutrigenomics, which is based
on the principle that DNA damage is a fundamental cause of disease
that can be diagnosed and nutritionally prevented on an individual,
genetic subgroup, or population basis. In this article, the following
topics are discussed: 1) biomarkers used to study genome damage in
humans and their validation, 2) evidence for the association of
genome damage with developmental and degenerative disease, 3)
current knowledge of micronutrients required for the maintenance
of genome stability in humans, 4) the effect of nutrient-nutrient and
nutrient-genotype interaction on DNA damage, and 5) strategies to
determine dietary reference values of single micronutrients and mi-
cronutrient combinations (nutriomes) on the basis of DNA damage
prevention. This article also identifies important knowledge gaps
and future research directions required to shed light on these issues.
The ultimate goal is to match the nutriome to the genome to opti-
mize genome maintenance and to prevent pathologic amounts of
DNA damage. Am J Clin Nutr doi: 10.3945/ajcn.2010.28674D.

INTRODUCTION

Dietary reference values (DRVs) are intended to provide
a guide for the appropriate intake of nutrients for prevention of
diseases caused by deficiency (eg, scurvy in the case of vitamin
C) or excess (eg, iron-overload disease, which may be fatal) (1).
Determining these extremes is important, but the biggest chal-
lenge in the prevention of developmental and degenerative dis-
ease in populations that are not short of food, fortified food, or
supplements is defining the appropriate intakes of micronutrients
individually or in combination (nutriomes) to optimize cellular
and organism performance on both a personal and a genetic
subgroup level at different life stages. Optimization of cellular
function ultimately depends on the prevention of damage to the
nuclear and mitochondrial genome.

We commence life as a single-cell embryo, which is literally
a packet of the human diploid genome primed for replication.
This genome has to be replicated with high fidelity millions of
times during development to a fetal and adult stage and millions
of times thereafter simply to replenish dead cells and cells lost as
a result of exfoliation. The capacity to replicate DNA accurately
and to produce sufficient daughter cells is limited by the need of
cofactors and substrates required for DNA replication and DNA
repair as well as accumulated DNA damage that can trigger cell
death by apoptosis. The accumulation of mutations at the base
sequence or chromosomal level as a result of genotoxic insults
due to endogenous and exogenous factors is now recognized as
a fundamental underlying cause of developmental defects and
accelerated aging as well as of an increased risk of degenerative
conditions such as infertility, immune dysfunction, cancer, and
cardiovascular and neurodegenerative diseases (2–6).

This brief review aims to discuss the concept that DRVs need
to be focused on defining the optimal intake of micronutrients
individually or in combination for prevention of DNA damage
because it is becoming increasingly evident that inappropriate
nutrition can cause significant harms to the genome that are
of a similar magnitude as those induced by environmental
genotoxins and carcinogens (2–4, 7–9). The central aim of
this article is to consider the proposition that the prevention
of harm to the genome should be a top priority in the setting of
nutritional guidelines, in public health strategy, and in preventive
medicine generally and that this approach is now technically
feasible by using a set of validated and accurate methods for
measuring genome damage at both the molecular and the cy-
togenetic level.
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BIOMARKERS USED TO STUDY GENOME DAMAGE IN
HUMANS AND THEIR VALIDATION TO STUDY THE
EFFECTS OF NUTRITION

Numerous biomarkers of DNA damage have been developed
over thepast30years,whichhasenabled theaccuratemeasurement
ofDNAbasedamage(eg,hydroxyl radicaladductsonnucleotides),
microdeletions and amplifications in the DNA sequence, DNA
strand breaks, telomere length as well as measurement of DNA
damage at the chromosomal level such as acentric chromosome
fragments, chromosome rearrangements, and loss or gain ofwhole
chromosomes leading to aneuploidy (10–15). Furthermore, these
biomarkers of chromosome damage can also be visualized at the
cytologic level by using micronucleus cytome assays that were
developed for use with cell lines, peripheral blood lymphocytes,
erythrocytes, andbuccal cells (16–19).Micronuclei originate from
acentric chromosome fragments or whole chromosomes that fail
to engage the spindle during nuclear division and therefore pro-
vide a measure of either chromosome breakage or chromosome
loss, respectively. In the cytokinesis-blockmicronucleus (CBMN)
assay,whichiscommonlyusedwithperipheralbloodlymphocytes,
once-divided cells that can express this damage are identified as
binucleated cells by using a cytokinesis-blocking agent (cyto-
chalasin-B). Within these binucleated cells it is also possible to
measurenucleoplasmicbridges (NPBs),whicharise fromdicentric
chromosomes (caused by misrepair of DNA strand breaks or by
telomere end fusions) and nuclear buds (NBUDs), biomarkers of
gene amplification (Figure 1 and Figure 2).

The presence of micronuclei, NPBs, and/or NBUDs is a strong
indicator of chromosomal damage and instability within a cell
(17). Micronuclei, NPBs, and NBUDs have been shown to be
sensitive to small changes in micronutrient concentration (eg, in
folic acid, riboflavin, selenomethionine) within the physiologic
range (20–22). It is important to note that these cytogenetic and
cytological biomarkers of chromosome damage can detect the
genotoxic effects via a multitude of mechanisms and therefore
tend to have the advantage of being very sensitive and capable of
integrating the effects of multiple interactions and molecular
genotoxic events on genome stability. Ideally, these techniques
should be combined with other DNA damage diagnostics that can
measure specific lesions in the DNA such as oxidized DNA bases,
methylation status of DNA at repeat or promoter sequences, and
telomere length as well as mitochondrial DNA (mtDNA) dele-
tions (14, 23–30).

A limitation of these more specific techniques is that they
reflect only a small portion of the grand total of genomic damage
and do not provide information on defects in the functionality of
the genome that result from the presence of that lesion. For
example, measuring telomere length alone is insufficient to know
whether this also results in telomere end fusions, which are the
main pathological event that leads to chromosomal instability.
However, telomere end fusions could be measured in the nu-
cleoplasmic bridge index within the CBMN cytome assay if
combined with telomere labeling (17, 31, 32). For the purpose of
in vitro modeling, it is also important that the assays used for in
vivo studies can also be used in vitro so that micronutrient
combinations and their interactions with endogenous genotoxins
(eg, hydrogen peroxide, nitric oxide) and exogenous genotoxins
(eg, ultraviolet radiation, dietary carcinogens such as heterocy-
clic amines in cooked meat) can be efficiently explored.

The DNA damage biomarkers most commonly used in nu-
trition studies, along with a description of their strengths and
weaknesses, are listed in Table 1. Most of these techniques can
be used in in vitro studies, but others, such as the erythrocyte
micronucleus assay, cannot be used for this purpose. Neverthe-
less, this method, like the others listed in Table 1, is practical for
use in in vivo studies also. Although it has been shown to be
associated with nutritional status in both cross-sectional and
controlled trials and with disease states such as thalassaemia
(19, 33, 34), no prospective studies have yet been performed to
validate the erythrocyte micronucleus method as a predictor of
disease in humans. However, evidence in rodents suggests that it
is predictive of cancer risk in animals exposed to carcinogens
(33–35). These types of considerations are important when de-
ciding which battery of tests are best suited for determining
nutrient reference values for micronutrients to prevent DNA
damage.

Ideally, the biomarkers of DNA damage that are of interest
would be predictive of human disease risk and modifiable by diet
in humans. However, only some of the assays listed in Table 1
have been validated as being responsive to nutritional in-
tervention in placebo-controlled trials as well as being predictive
of developmental and/or degenerative disease risk in humans

FIGURE 1. Expression of micronuclei and nucleoplasmic bridges (NPBs)
during nuclear division. Micronuclei originate either from 1) lagging whole
chromosomes (top) that are unable to engage with the mitotic spindle due to
a defect in the spindle or a defect in the centromere/kinetochore complex
required to engage with the spindle or from 2) an acentric chromosome
fragment originating from a chromosome break (top and bottom), which
lags behind at anaphase because it lacks a centromere/kinetochore
complex. Misrepair of 2 chromosome breaks may lead to an asymmetrical
chromosome rearrangement, which produces a dicentric (ie, 2 centromeres)
chromosome and an acentric fragment (bottom). Frequently, the centromeres
of the dicentric chromosome are pulled to opposite poles of the cell at
anaphase resulting in the formation of a NPB between the daughter
nuclei. NPBs are frequently accompanied by a micronucleus originating
from the associated acentric chromosome fragment. NPBs may also
originate from dicentric chromosomes caused by telomere end fusions.
Because micronuclei and NPBs are expressed only in cells that have
completed nuclear division, it is necessary to score these genome
instability biomarkers specifically in once-divided cells. This is readily
accomplished by blocking cytokinesis using cytochalasin-B. In the
cytokinesis-block micronucleus assay, Micronuclei and NPBs are
specifically scored in the binucleated cells accumulated in culture by
adding cytochalasin-B, the cytokinesis-blocking agent used in the assay.
See reference 17 for a more detailed explanation.
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(22–225). The current status of the validation of the most
commonly used DNA damage biomarkers in nutrition studies—
which include the cytokinesis-block micronucleus cytome
(CBMN-Cyt) assay in lymphocytes (17), the buccal micronucleus
cytome assay (16), the red blood cell micronucleus assay (33), the
comet assay of DNA strand breaks in lymphocytes (36, 37),
telomere length (26–28), DNA methylation (24–26), DNA oxi-
dation (38, 39), and mtDNA deletion (29, 30) in leukocytes or
lymphocytes—is summarized in Table 2. At this point only the
micronuclei frequency index in the CBMN-Cyt assay in human
lymphocytes has been substantially validated with respect to its
sensitivity to changes in nutritional status in both cross-sectional
and placebo-controlled trials and its association, via cross-sectional
and prospective studies, with developmental and degenerative
disease. The other assays currently either lack evidence of pro-
spective association with disease outcomes or, as is the case
for telomere length, lack evidence from placebo-controlled trials
of being modifiable by altered nutrient intake in humans.
These aspects will be discussed in more detail in the following
sections.

EVIDENCE FOR THE ASSOCIATION OF GENOME
DAMAGE WITH DEVELOPMENTAL AND
DEGENERATIVE DISEASE

Genome damage affects health outcomes at all stages of life.
Infertile couples exhibit a higher rate of genome damage than
fertile couples when their chromosomal stability is measured in
lymphocytes by using the CBMN-Cyt assay (119). Infertility may
be due to a reduced production of germ cells because genome
damage effectively causes programmed cell death or apoptosis,

which is one of the mechanisms by which grossly mutated
cells are normally eliminated (226–228). When the latter mech-
anism fails, reproductive cells with genomic abnormalities
may survive, which leads to serious developmental defects (229,
230).

It has also become evident that parental DNA damage level
measured by the CBMN or oxidized guanine assays is associated
with abnormal pregnancy outcomes such as recurrent pregnancy
loss or lower infant birth weight (180, 181, 231). That an elevated
rate of chromosomal damage is a cause of cancer has been shown
by ongoing prospective cohort studies in European countries,
which showed a 2- to 3-fold increased risk of cancer in those
whose chromosomal damage rate in lymphocytes was in the
highest tertile when measured 10–20 y before cancer incidence
was measured (232). It has also been shown that an elevated
micronuclei frequency, a robust biomarker of chromosome
breakage or loss, in lymphocytes predicts cancer risk (135, 137)
and cardiovascular disease mortality in humans (136, 138).
Excessive chromosomal damage and micronuclei are also as-
sociated with neurodegenerative diseases such as Alzheimer’s
and Parkinson’s disease (126–131). Telomere shortening has
been shown to be predictive of risk of certain cancers (207, 211,
217), cardiovascular disease, cognitive decline, and likelihood of
mortality (202–206, 212–219). Those individuals with acceler-
ated aging syndromes due to redox imbalances (eg, Down
syndrome) and/or suboptimal DNA repair (eg, carriers of dele-
terious mutations in the ATM or BRCA1 genes) may be partic-
ularly susceptible to the genome-damaging effects of suboptimal
micronutrient intake. Recent evidence suggests that genome
instability in such syndromes might be mitigated by appropriate
micronutrient supplementation (233, 234).

CURRENT KNOWLEDGE OF MICRONUTRIENTS
REQUIRED FOR MAINTENANCE OF GENOME
STABILITY IN HUMANS

There is overwhelming evidence that a large number of
micronutrients (vitamins and minerals) are required as cofactors
for enzymes or as part of the structure of proteins (metal-
loenzymes) involved in DNA synthesis and repair, prevention of
oxidative damage to DNA, and maintenance methylation of
DNA. The role of micronutrients in maintenance of genome
stability has been extensively reviewed (2–4, 7–9). Examples of
micronutrients involved in various genome stability processes are
given in Table 3, and some of the various possible mechanisms
by which micronutrient deficiency could cause DNA damage,
accelerated senescence, and chromosomal instability are illus-
trated in Figure 3.

Both micronutrient deficiency and micronutrient excess can
cause genome damage. These effects could be of the same order
of magnitude, if not greater, than the genome damage caused by
exposure to significant doses of environmental genotoxins such
as chemical carcinogens, ultraviolet radiation, and ionizing ra-
diation. An example from our laboratory is the observation
that the chromosomal damage in cultured human lymphocytes
caused by reducing folate concentration from 120 to 12 nmol/L
is equivalent to that induced by an acute exposure to 0.2 Gy
of low linear-energy-transfer ionizing radiation (eg, X-rays),
a dose of radiation that is ’10 times greater than the annual
allowed safety limit of exposure for the general population (239)

FIGURE 2. The various biomarkers scored in the cytokinesis-block
micronucleus cytome assay in lymphocytes. DNA damage biomarkers are
scored in binucleated cells (BNC), which accumulate by blocking
cytokinesis with cytochalasin-B during ex vivo culture. The DNA damage
biomarkers scored are as follows: 1) micronuclei (MN), biomarkers of
chromosome breakage or loss; 2) nucleoplasmic bridges (NPB),
biomarkers of dicentric chromosomes that originate from either misrepair
of DNA breaks or telomere end fusions; and 3) nuclear buds (NBUD),
a biomarker of gene amplification. Cell death by necrosis or apoptosis is
also measured on the basis of morphologic changes in the nuclei and
cytoplasm. The ratio of mononucleated to binucleated cells also provides
a measure of mitogenic response and cytostasis. G0, G1, S, and G2 refer to
stages in the mitotic cycle. See reference 17 for a more detailed explanation.
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(Figure 4). These results imply that genome damage biomarkers
are not only biodosimeters (ie, indicators of the dose experi-
enced by tissues) of exposure to human-made or natural geno-
toxins but also biodosimeters of the deficiency in micronutrients

required 1) for the prevention of oxidation to DNA (eg, anti-
oxidants), 2) the prevention of uracil incorporation into DNA
(eg, folate), 3) for the maintenance methylation of CpG in DNA
(eg, methionine, choline, folate, vitamin B-12), 4) as cofactors

TABLE 2

Validation status of DNA damage biomarkers in peripheral blood cells, buccal cells, plasma, or urine with respect to association with nutrition and

developmental or degenerative disease or mortality in humans1

Association with

nutritional status

Association with developmental or

degenerative disease or mortality

Cross-sectional

studies

Controlled intervention

studies

Case-control

studies Prospective cohort studies

Cytokinesis-block micronucleus assay in PBLs 22, 40–46 [H] 40, 41, 46–57 [H] 120–134 [H] 135–138 [M]

Micronucleus assay in buccal cells 58–60 [L] 60–67 [H] 61, 62, 67, 139–152 [H] NSP

Micronucleus assay in erythrocytes 18, 19, 34, 68–72 [H] 18, 19, 72 [L] 33, 153, 154 [L] NSP

DNA strand breaks in PBLs: comet assay 73–75 [L] 76–87 [H] 155–176 [H] NSP

DNA oxidation (8-OHdG in DNA or urine) 88–91 [M] 92–102 [H] 177–192 [H] NSP

DNA methylation2 103–105 [L] 106–109 [M] 193–201 [H] NSP

Telomere length in PBLs or leukocytes 110–114 [M] NSP 202–211 [H] 212–219 [H]

Mitochondrial DNA deletion 115–117 [L] 118 [L] 220–225 [M] NSP

1 8-OHdG, 8#hydroxydeoxyguanosine; PBLs, peripheral blood lymphocytes; NSP, no studies yet published. Letters in brackets refer to validation status

based on number of published studies: H = high (�7 published studies), M = medium (4–6 published studies), and L = low (1–3 published studies).
2 Global or gene-specific methylation.

TABLE 1

Strengths and weaknesses of best-validated DNA damage assays for nutritional studies in humans1

DNA damage assays

CBMN-Cyt

Red blood cell

micronucleus

Buccal

micronucleus

cytome Comet

DNA

oxidation

DNA

methylation

Telomere

length

mtDNA

deletion

DNA damage events

measured

DNA breaks Yes Yes Yes Yes No No No Yes

Misrepair of DNA breaks Yes Yes Yes No No No No No

Oxidized DNA bases No No No Yes2 Yes No No No

Chromosome

malsegregation

Yes3 Yes3 Yes3 No No No No No

Chromosomal deletions Yes3 Yes3 Yes3 No No No No No

Dicentric chromosome or

telomere end fusion

Yes4 No No No No No No No

Telomere length No No No No No No Yes No

Hypo/hypermethylation

of DNA

No No No No No Yes No No

Abasic sites in DNA No No No Yes5 No No No No

mtDNA damage No No No No No No No Yes

Other features

Distinguishes DNA

damage in viable cells

from cell death6

Yes Yes Yes No No No No No

Suitable for in vitro

studies

Yes No Yes Yes Yes Yes Yes Yes

Cell type in which assay is

performed

PBLs RBCs Oral

mucosa

Any cell

type

Any cell

type

Any cell

type

Any cell

type

Any cell

type

1 CBMN-Cyt, cytokinesis-block micronucleus cytome; mtDNA, mitochondrial DNA; PBLs, peripheral blood lymphocytes; RBCs, red blood cells.
2 If used in combination with glycosylase enzymes that remove oxidized bases.
3 By measuring micronuclei with/without centromere staining.
4 By measuring nucleoplasmic bridges with/without telomere staining.
5 If alkaline version of the assay is used.
6 The inability to distinguish between DNA damage from dead or from viable cells may confound DNA damage results.
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or as components of DNA repair enzymes (eg, zinc, magnesium),
and 5) for the maintenance of telomere length (eg, niacin, folate)
(2–4, 7–9, 236–245). The sensitivity of DNA damage to mi-
cronutrient deficiency is underscored by the fact that there are at
least 8 human DNA repair glycosylases dedicated to the removal
of the type of DNA base damage (eg, 8-hydroxydeoxyguanosine,

uracil) that is produced when 1) antioxidant micronutrients (eg,
zinc, vitamin C, and vitamin E) or 2) methyl donor micro-
nutrients (eg, folate, methionine, and vitamin B-12) are deficient
(246, 247).

Results from a recent population study suggest that �9 mi-
cronutrients affect genome stability in humans in vivo (Table 4)

TABLE 3

Examples of the role and effect of deficiency of specific micronutrients on genomic stability1

Micronutrients Role in genomic stability Consequence of deficiency

Vitamin C, vitamin E,

antioxidant polyphenols

(eg, caffeic acid)

Prevention of oxidation to DNA and lipid

oxidation.

Increased baseline level of DNA strand breaks,

chromosome breaks and oxidative DNA lesions,

and lipid peroxide adducts on DNA.

Folate, riboflavin, and

vitamins B-6 and B-12

Maintenance methylation of DNA; synthesis

of dTMP from dUMP and efficient recycling

of folate.

Uracil misincorporation in DNA and increased

chromosome breaks and DNA hypomethylation.

Niacin Required as substrate for PARP, which is

involved in cleavage and rejoining of DNA

and telomere length maintenance.

Increased number of unrepaired nicks in DNA,

increased chromosome breaks and rearrangements,

and sensitivity to mutagens.

Zinc Required as a cofactor for Cu/Zn superoxide

dismutase, endonuclease IV, function of p53,

Fapy glycosylase, and in zinc-finger proteins

such as PARP.

Increased DNA oxidation, DNA breaks, and elevated

chromosome damage rate.

Iron Required as component of ribonucleotide

reductase and mitochondrial cytochromes.

Reduced DNA repair capacity and increased propensity

for oxidative damage to mitochondrial DNA.

Magnesium Required as cofactor for a variety of DNA

polymerases, in nucleotide excision repair,

base excision repair, and mismatch repair.

Essential for microtubule polymerization and

chromosome segregation.

Reduced fidelity of DNA replication. Reduced DNA

repair capacity. Chromosome segregation errors.

Manganese Required as a component of mitochondrial

manganese superoxide dismutase.

Increase susceptibility to superoxide damage to

mitochondrial DNA and reduced resistance to

radiation-induced damage to nuclear DNA.

Calcium Required as cofactor for regulation of the

mitotic process and chromosome segregation.

Mitotic dysfunction and chromosome segregation

errors.

Selenium Selenoproteins involved in methionine metabolism

and antioxidant metabolism (eg, selenomethionine,

glutathione peroxidase I).

Increase in DNA strand breaks, DNA oxidation, and

telomere shortening.

1 Data are from references 2–4, 7–9, and 236–245. dTMP, deoxythymidine monophosphate; dUMP, deoxyuridine monophosphate; PARP, poly(ADP-

ribose) polymerase.

FIGURE 3. Examples of possible mechanisms by which micronutrient deficiency could cause damage to the genome, accelerate senescence, and promote
chromosomal instability. mtDNA, mitochondrial DNA; BFB, chromosomal breakage-fusion-bridge cycles.
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(40). This cytogenetic epidemiologic study on 190 healthy in-
dividuals (mean age: 47.8 y; 46% males) was designed to de-
termine the association between dietary intake, which was
estimated by using a food-frequency questionnaire, and genome
damage in lymphocytes, which was measured by using the
cytokinesis-block micronucleus assay. Multivariate analysis of
baseline data showed that 1) the highest tertile of intake of vi-
tamin E, retinol, folate, nicotinic acid (preformed), and calcium

is associated with significant reductions in micronuclei fre-
quency (ie, 228%, 231%, 233%, 246%, and 249%, re-
spectively; all P , 0.005) relative to the lowest tertile of intake
and that 2) the highest tertile of intake of riboflavin, pantothenic
acid, and biotin was associated with significant increases in
micronuclei frequency [ie, +36% (P = 0.054), +51% (P =
0.021), and +65% (P = 0.001)], respectively, relative to the
lowest tertile of intake. Midtertile b-carotene intake was asso-
ciated with an 18% reduction in micronuclei frequency (P =
0.038); however, the highest tertile of intake (.6400 lg/d) re-
sulted in an 18% increment in micronuclei frequency. In inter-
preting the data from this study, it is important to note that
micronutrients usually exhibit metabolic dose-response effects
in which both deficiency and excess can be deleterious (248–
254), and it is probable that in a specific mixed diet, depending
on the intake level of an individual, some of the micronutrients
may be outside the intake range that is optimal for prevention of
genome instability. The results for b-carotene suggest an opti-
mum for genome stability between 4000 and 6000 lg/d with
a tendency for marked increase in genome damage at higher or
lower intakes, which is consistent with data that suggest an in-
creased cancer risk with deficiency or supplementation above
the Recommended Dietary Intake for this vitamin (248, 250,
254).

On the other hand, the apparent genome damage prevention
effects associated with vitamin E, retinol, folic acid, preformed
nicotinic acid, and calcium were still increasing at the highest

FIGURE 4. Comparison of the dose-response effect on micronucleus
induction in cytokinesis-blocked cultured lymphocytes caused by 1) acute
exposure to X-rays up to a maximum dose of 20 rad, which is equivalent to
10 times the annual exposure safety limit for the general public (235), and 2)
folic acid deficiency within the normal physiologic range of 12–120 nM
concentration. BNCs, binucleated cells. Results represent the mean 6 1
SEM; n = 6 for X-rays and n = 20 for folic acid experiments.

TABLE 4

Association of intake of specific micronutrients with baseline micronuclei frequency in lymphocytes in a South Australian cohort of healthy adults1

Tertiles of

intake Subjects

Variation of

micronuclei frequency2 95% CI P2

n % %

Calcium (mg/d) �927.50 63 0 — —

927.51–1249.55 63 218 (236, 5) 0.121

�1249.56 63 249 (263, 230) ,0.001

Nicotinic acid, preformed (mg/d) �20.04 63 0 — —

20.05–25.72 63 226 (240, 29) 0.004

�25.73 63 246 (258, 230) 0.001

Folate (lg/d) �206.64 63 0 — —

206.65–256.49 63 216 (232, 3) 0.094

�256.50 63 233 (249, 213) 0.003

Retinol (lg/d) �296.37 63 0 — —

296.38–457.47 63 210 (224, 7) 0.233

�457.48 63 231 (243, 216) 0.001

Vitamin E (mg/d) �7.87 63 0 — —

7.88–10.71 64 215 (228, 1) 0.066

�10.72 62 228 (242, 211) 0.003

b-Carotene (lg/d) �4161.32 63 0 — —

4161.33–6433.12 63 218 (232, 21) 0.036

�6433.13 63 18 (26, 48) 0.148

Riboflavin (mg/d) �1.84 63 0 — —

1.85–2.41 64 41 (11, 78) 0.005

�2.42 62 36 (21, 85) 0.054

Pantothenic acid (mg/d) �4.59 63 0 — —

4.60–5.64 64 69 (34, 115) ,0.001

�5.65 62 51 (6, 114) 0.021

Biotin (lg/d) �18.86 63 0 — —

18.87–25.49 63 7 (214, 33) 0.542

�25.50 63 65 (22, 123) 0.001

1 Data are from reference 40.
2 Percentage variation and P values refer to comparison with the lowest tertile of intake.
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tertile of intake, which suggests that an optimum could be
achieved at even higher intakes or that the maximum beneficial
effect is achieved at these intakes. For example, the highest tertile
of intake for folate was .256 lg/d, which is consistent with
a number of studies showing that developmental defects and
cancer, as well as biomarkers for cardiovascular disease risk
such as homocysteine, are minimized at folate intakes of �400
lg/d (242, 255–258). That both vitamin deficiency and vitamin
excess can increase carcinogenesis is supported by several
studies (9, 248, 249, 259) and highlights the acute need for
better knowledge of dose–response relations between micro-
nutrient intake and genome damage.

We were also interested in investigating the combined effects
of calcium or riboflavin with folate consumption because epi-
demiologic evidence suggests that these dietary factors tend to
interact in modifying the risk of cancer (260–262) and that they
are also associated with a reduced risk of osteoporosis and hip
fracture (263–265). Interactive additive effects, such as the
protective effect (246%) of increased calcium intake and the
exacerbating effect (+42%) of higher riboflavin consumption on
increased genome damage caused by low folate intake, were
observed (Figure 5). The results from this study illustrate the
strong effect of a wide variety of micronutrients and their in-
teractions on genome health depending on amount of intake.
The unexpected effects of these interactions highlight the need
to consider not only individual micronutrients but also micro-
nutrient combinations at varying dosages. The term nutriome
was introduced to define this important aspect of nutritional
requirements that needs much attention (266, 267). The ultimate

goal is to define for each individual the nutriome that matches
their genome to allow optimal genome stability to be achieved.
Culturing an individual’s cells in an array of multiple micro-
nutrient combinations under physiologic conditions is emerging
as the ultimate tool in the genome health nutrigenomics disci-
pline that will allow for the discovery of individualized nu-
triomes for optimal genome stability tailored to specific
genotypes (20, 268–270).

The amounts of micronutrients that appear to be protective
against genome damage vary greatly between foods (3, 271), and
careful choice is needed to design dietary patterns optimized for
genome health maintenance. Because dietary choices vary be-
tween individuals, due to taste preferences that may be geneti-
cally determined (272, 273) or cultural or religious constraints,
several options are required, and supplements may be needed
to cover gaps in micronutrient requirements. Clearly, the devel-
opment or identification of nutrient-dense foods and ingredients
that are rich in micronutrients required for DNA replication
and repair and for the prevention of genome-damaging events
is essential for individuals to achieve their daily nutrient re-
quirements for genome health maintenance without the intake of
excess calories.

An important development is the observation that, although
DNA damage measured by both molecular and cytogenetic
biomarkers tends to increase with age (274–277) (Figure 6), it is
possible to attenuate the rate of increase or to reduce the number
of these biomarkers by appropriate dietary change or supple-
mentation by specific micronutrient combinations (18, 19, 40,
41, 46–57, 60–67, 72, 76–87, 90–102, 106–109, 114, 118, 278).
A limitation of some of these studies is that they are usually
performed over brief periods of time (3–6 mo) and limited to
single tissues, usually blood cells and single assays of DNA
damage. A more robust approach should include the following:
1) measurements in multiple tissues that can be easily accessed,
such as lymphocytes and neutrophils in the hematopoietic sys-
tem as well as buccal cells as representatives of epithelial cells
that compose the bulk of the body, and 2) a comprehensive set of
complementary biomarkers of genome damage to measure both
chromosomal instability events that can be readily performed by
using micronucleus cytome assays and molecular lesions such as
DNA hypo- or hypermethylation, telomere length, DNA oxi-
dation, and mtDNA deletions (Tables 1 and 2).

EFFECT OF NUTRIENT-NUTRIENT AND
NUTRIENT-GENOTYPE INTERACTIONON DNA DAMAGE

As indicated above, it is plausible that interactive effects
between micronutrients can modify the nutritional requirements
for genome maintenance. The detailed study of nutrient–nutrient
and nutrient-genotype effects on DNA damage is limited by the
resources needed to investigate the numerous possible combi-
nations. However, it has been shown that it is possible to use
in vitro modeling to investigate these effects with long-term
cultures of peripheral blood lymphocytes (20). The use of
lymphocytes for this purpose is ideal because these cells can be
studied both in vitro and in vivo, which provides a fully integrated
approach by using the same cell system. We tested the hypothesis
that the methylenetetrahydrofolate reductase (MTHFR) C677T
polymorphism, folic acid deficiency, and riboflavin deficiency,
independently or interactively, are important determinants of

FIGURE 5. The combined effect of (A) calcium and folate intake and (B)
riboflavin and folate intake on micronucleus frequency in lymphocytes.
Results shown are the percentage variation relative to the combined lowest
tertiles of intake in the pair of nutrients examined. *P, 0.05 for comparison
with the referent value for the combined lowest tertile of intake for the pair
of nutrients examined. See reference 40 for a more detailed explanation.
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genomic stability, cell death, cell proliferation, and homo-
cysteine concentration in 9-d human lymphocyte cultures (20).
Lymphocytes of 7 wild-type (CC) and 7 mutant (TT) homo-
zygotes were cultured under the 4 possible combinations of
deficiency and sufficiency of riboflavin (0 and 500 nmol/L) and
folic acid (20 and 100 nmol/L) at a constant L-methionine
concentration of 50 lmol/L. Viable cell growth was 25% greater
in TT than in CC cells (P , 0.05) and 32% greater at 100 nmol
folic acid/L than at 20 nmol folic acid/L (P = 0.002). The
comprehensive CBMN-Cyt assay (17) was used to measure the
DNA damage biomarkers micronucleus, NPB, and NBUD. The
micronucleus amounts were 21% higher in TT cells than in CC
cells (P , 0.05) and 42% lower in the high-folic-acid medium
than in the low-folic-acid medium (P , 0.0001). The NBUD
amounts were 27% lower in TT cells than in CC cells (P, 0.05)
and 45% lower in the high-folic-acid medium than in the low-
folic-acid medium (P , 0.0001). High riboflavin concentration
(500 nmol/L) increased NBUD amounts by 25% (compared
with 0 nmol riboflavin/L) in folate-deficient conditions (20 nmol
folic acid medium/L; P , 0.05), and there was an interaction
between folic acid and riboflavin that affected NBUD amounts
(P = 0.042). This preliminary investigation suggests that the

MTHFR C677T polymorphism and riboflavin affect genome
instability; however, the effect is relatively small compared with
that of folic acid. The fact that the results of this in vitro study
are consistent with in vivo observations of elevated homo-
cysteine under low-folate conditions in homozygous carriers
(TT) of the MTHFR C677T polymorphism (270) and with the
apparent increased genomic instability when riboflavin is in-
creased in a low-folate background in vivo (41) suggests that
it is feasible to use in vitro approaches to define nutriomes that
are optimal for genome stability for individuals and genetic
subgroups.

Similar studies have been performed of individuals with
BRCA1 and BRCA2 mutations on the interaction with folic acid
and methionine concentration (268, 269) to investigate the in-
teraction of alcohol and folic acid (279) and define the optimal
ratio of seleno:methionine relative to sulfur:methionine at a
constant methionine concentration for the prevention of DNA
damage and cytotoxicity (21). On the basis of this type of
knowledge it is possible to start building plausible mechanistic
models of nutrient-nutrient, nutrient-gene interaction, and nu-
triome-genome interactive effects on genome stability. Two
examples of such models are described in Figure 7 and Figure
8. In vitro models are also relevant because we live in an era
when cells are taken out of the body and expanded in vitro
before being returned to the body (eg, stem cell transplants and
immune-system cell transplants). Defining the nutrient compo-
sition of the optimal culture medium to prevent DNA damage is
critical to keeping oncogenic chromosomal changes from oc-
curring during culture.

STRATEGIES TO DETERMINE DRVs OF SINGLE
MICRONUTRIENTS AND MICRONUTRIENT
COMBINATIONS (NUTRIOMES) FOR DNA DAMAGE
PREVENTION

To determine DRVs of single micronutrients, it is necessary to
first perform in vitro dose-response studies on the effect of
micronutrient concentration on DNA damage and cytotoxicity
and on in vivo cross-sectional investigations of the association of
dietary intake with DNA damage biomarkers. Then it is essential
to verify this association by appropriate controlled in vivo trials
that test both whole foods that are rich in the micronutrient of
interest and placebo-controlled trials that use supplements. The
various aspects of the best-established assays that have been used
successfully in human nutrition studies are summarized in Tables
1 and 2. Ideally, combinations of tests that cover the most im-
portant genomic damage pathologies that have been shown to be
associated prospectively with adverse health outcomes are used.
These include 1) chromosome deletions or rearrangements that
can be measured by the lymphocyte CBMN-Cyt assay, 2) DNA
hypomethylation, 3) DNA oxidation, 4) telomere length, and 5)
mtDNA deletions. Indirect biomarkers of DNA damage such as
the elevated expression of genes associated with increased DNA
damage [eg, P53, WAF1, and GADD45 (280, 282)] may be
justifiably used as supporting evidence if prospective association
with adverse health outcomes is ultimately shown.These DNA
damage biomarker studies need to be coupled with robust di-
etary intake tools and preferably with blood and tissue measures
of nutritional status ideally in the target cells in which DNA
damage is measured.

FIGURE 6. Variation in chromosome DNA damage rates of healthy
nonsmoking men (n = 495) and women (n = 511) within and between age
groups measured by using the cytokinesis-block micronucleus assay. MN,
micronuclei; BN, binucleated cells.
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To date, the intervention studies investigating the effects of
micronutrients on DNA damage have been limited by sampling
only a single tissue, usually blood cells. Furthermore, studies
using mixtures of cells (eg, leukocytes that contain both myeloid
and lymphoid cell types) may be confounded by changes in ratios
of different cell types if DNA damage rates vary between these
subsets. Because of differences in gene expression between
hematopoietic and epithelial tissues, it would be preferable to
also include measurements in an easily accessible epithelial
tissue such as buccal cells in oral mucosa. Using oral mucosa also
has the advantage of involving a minimally invasive procedure
that can be used for studies in babies, infants, and children. It

would also be preferable to miniaturize blood tests so that they
can be done on finger-stick blood, which is much easier and less
uncomfortable than using venipuncture by syringe. The duration
of the intervention studies should also take into consideration the
cellular turnover rate of the tissue that is sampled, which can vary
greatly from 14 to 21 d in buccal cells to �6 mo in lymphocytes
(16, 17).

Given the observed nutrient–nutrient interactive effects and
nutrient-genotype effects with respect to genome stability, it will
also be necessary to use cross-sectional and intervention study
designs that control for these possible interactions by gathering
relevant genetic information and by stratifying the analyses
according to genotype and the intake or concentration of the
interacting nutrient or nutrients. A simple diagram of a possible
road map to determine DRVs for genome stability is provided in
Figure 9.

IMPORTANT TECHNICAL CHALLENGES AND THE
NEED FOR HARMONIZATION

For a properly coordinated approach to defining DRVs for
DNA damage prevention, it is essential that standard, robust, and
transportable protocols for measuring the various DNA damage
biomarkers described in Tables 1 and 2 are established. This is
already the case for the lymphocyte and buccal micronucleus
cytome assays (16, 17), the comet assay (36, 37), some of the
DNA oxidation assays (14, 38, 39), DNA methylation (23, 24),
telomere length (26–28), and mtDNA deletion assays (29, 30).
DNA damage measured by these biomarkers is indicative of
residual DNA lesions due to either inefficient or inaccurate DNA
repair and/or a level of steady state DNA damage that is excessive
relative to normal DNA repair capacity. The effects of micro-
nutrients on the DNA repair process could be analyzed separately
from baseline DNA damage by ex vivo/in vitro challenge tests

FIGURE 7. Mechanistic framework explaining the interrelation between MTHFR genotype, riboflavin (R), and folic acid (F) with respect to the following:
1) CpG methylation and uracil in DNA; 2) aneuploidy and micronuclei (MNi) originating from chromosome loss events; 3) MNi (originating from acentric
chromosome fragments), nuclear buds (NBUD), nucleoplasmic bridges (NPB), and breakage-fusion-bridge (BFB) cycles; 4) initiation of cancer caused by
CpG hypomethylation and aneuploidy; and 5) initiation of cancer caused by increased BFB cycles, MNi (originating from acentric chromosome fragments),
NBUDs, and NPBs. *For brevity, other carcinogenic mechanisms induced by altered genome methylation (eg, silencing of tumor suppressor genes and/or
activation of oncogenes) are not included in the diagram. chr., chromosome.

FIGURE 8. Possible mechanisms by which deficiency of folate, niacin (or
nicotinic acid), and/or antioxidants may cause dysfunction of telomeres and
consequently chromosomal instability (CIN) due to telomere end fusions. 8-
OHdG, 8#hydroxydeoxyguanosine.

MICRONUTRIENT DRVS FOR GENOME DAMAGE PREVENTION 9S of 17S



with a range of genotoxic agents that produce different DNA
lesions.

Some of the assays listed above are limited because they
provide only arbitrary values (eg, comet assay and quantitative
PCR assay for telomere length), but this is being addressed by the
use of standards with known amounts of DNA strand breaks or
known telomere length or content, respectively. Harmonization is
required in both the study designs and the test protocols in-
ternationally so that data of cross-sectional and intervention
studies from different laboratories and in different countries can
be reliably cross-referenced.

Furthermore, given the uncertainties regarding the genotoxic
effects of supplementation with supraphysiologic doses of
micronutrients, solely or in combination, it is essential to develop
in vitro physiologic models such as the peripheral blood lym-
phocyte culture system, which has been shown to be efficacious in
determining the U-shaped relation between micronutrient con-
centration and genome damage and/or cytotoxicity (20, 21).
These tests are essential to define optimal concentration and the
safe upper limits of micronutrients and their combinations.

KNOWLEDGE GAPS AND IMPLEMENTATION
CHALLENGES

An important knowledge gap is whether DNA damage
measurements in lymphocytes and buccal cells would be suffi-
cient to infer DRVs for DNA damage prevention for the whole
organism. Furthermore, it is essential that “normal” range values
of the validated DNA damage biomarkers are established for each
age and sex and that the numbers of these biomarkers that are
associated with a substantial elevated risk in adverse health
outcomes are determined. These databases are available within
research laboratories, but they should become increasingly ac-
cessible and possibly have better quality control if DNA damage
tests are also performed routinely within the clinical laboratory
setting. If one considers that damage to the genome is the most
fundamental pathology or disease, it becomes necessary to se-

riously appreciate the need for the inclusion of the validated DNA
damage biomarkers within the clinical setting, particularly in this
era of preventive and integrative medicine.

In other words, the adoption of DNA damage biomarkers
within mainstream preventive medicine would provide the
necessary momentum to establishing and continually refining
DRVs for prevention of DNA damage. The integration of DNA
damage biomarkers in preventive and integrative medicine is
starting to occur slowly, but infrastructure support, education, and
training of medical students and integrative medicine practi-
tioners is urgently needed to enable this to happen in a consoli-
dated, sustainable, and timely manner, given the rapid increase in
aging populations in developed countries. Furthermore, there is
an urgent need to translate this knowledge into the design of high-
nutrient-density foods that are appropriate for optimal genome
maintenance so that the nutritional requirements of disadvan-
taged communities and populations are also efficaciously met at
the genome level.

To date, all studies have been done with adults, and it is now
essential to determine the relation between nutrition and DNA
damage biomarkers across all life stages, including effects in germ
cells, the fetus in utero, premature babies, term babies, infants,
children, and teenagers. Because we live in the era of stem cell
technology in which cells grown in culture may be returned to the
body, it is also increasingly important to define the nutritional
requirements of the culture medium for prevention of DNA
damage because it is known that genomically unstable stem cells
have the potential to become progenitor cells for cancer (283–286).
This emphasizes the need for reliable and physiologic in vitro
systems in this scientific endeavor, given that commonly used
culture media (eg, RPMI 1640) are supra-physiologic for key
micronutrients such as folate (eg, folic acid concentration in RPMI
1640 is 2000 nM folic but plasma is 20–60 nM folate), which may
alter DNA methylation patterns, and that they are completely
deficient for others such as zinc, selenium, iron, andmanganese, all
of which are micronutrients required either for genome mainte-
nance and/or prevention of oxidative damage to DNA (Table 3).

FIGURE 9. A proposed road map for determining dietary reference values (DRVs) of single micronutrients or nutriomes (micronutrient supplement
combination, functional food, food group, or dietary pattern) for genome damage prevention by using in vitro and in vivo human models and multiple
complementary DNA damage diagnostics. Ideally, this research is also stratified to specific common genetic subgroups, sex, and life stages. mtDNA,
mitochondrial DNA.
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An important challenge is to devise ways to personalize nu-
tritional requirements for the optimization of genome stability by
appropriately matching the nutriome with the genome and its
current status of expression (ie, the transcriptome). It has been
shown that this is possible by in vitro modeling (20, 268, 270), and
by in silico modeling (287–289), but whether these tools can
ultimately be translated to predict the in vivo effects of advised
personalized nutrition on genome maintenance remains unknown.
Until the predictive validity of the in silico and in vitro systems and
the resulting expert systems can be proven, we shall have to rely on
more robust empirical approaches such as the Genome Health
Clinic concept (3, 7, 271), which is based on the diagnosis and
nutritional prevention of DNA damage on an individual basis. This
approach uses nutritional information that is applicable to the
general population but is combined with DNA damage biomarker
measurements to verify whether the advice given has actually
caused benefit in terms of improved genome stability in the in-
dividual. Ideally, both the effect on baseline levels of DNA damage
and the effect following ex vivo challenge to moderate genotoxic
insult should be measured because challenge tests should provide
an indication of the robustness of the homeostatic response to
strong perturbations in genome stability (125, 134, 170, 175, 292).

The ultimate and most difficult challenge is to verify that
reducing rates of DNA damage in the general population and/or
on an individual basis will in fact reduce the incidence and se-
verity of those diseases whose risk has been shown to be pro-
spectively increased if DNA damage is elevated. These diseases
include infertility, pregnancy complications, cancer, cardiovas-
cular disease, and possibly neurodegenerative disease. In silico
modeling and in vivo studies suggest that these interventions
would have to occur before the disease process caused by ex-
cessive DNA damage is initiated (289, 293). Studies in rodents in
which DNA damage in peripheral blood and buccal cells was
measured together with target tissue disease-specific pathology
during dietary intervention support the hypothesis that reducing
DNA damage nutritionally is a plausible strategy for prevention
of degenerative diseases (290, 291). Proving this in humans will
be more difficult but essential to completely justify nutritional
optimization of genome stability for disease prevention.
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